Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(4)2023 03 26.
Article in English | MEDLINE | ID: covidwho-2295903

ABSTRACT

Vaccination is widely used to control Infectious Bronchitis in poultry; however, the limited cross-protection and safety issues associated with these vaccines can lead to vaccination failures. Keeping these limitations in mind, the current study explored the antiviral potential of phytocompounds against the Infectious Bronchitis virus using in silico approaches. A total of 1300 phytocompounds derived from fourteen botanicals were screened for their potential ability to inhibit the main protease, papain-like protease or RNA-dependent RNA-polymerase of the virus. The study identified Methyl Rosmarinate, Cianidanol, Royleanone, and 6,7-Dehydroroyleanone as dual-target inhibitors against any two of the key proteins. At the same time, 7-alpha-Acetoxyroyleanone from Rosmarinus officinalis was found to be a multi-target protein inhibitor against all three proteins. The potential multi-target inhibitor was subjected to molecular dynamics simulations to assess the stability of the protein-ligand complexes along with the corresponding reference ligands. The findings specified stable interactions of 7-alpha-Acetoxyroyleanone with the protein targets. The results based on the in silico study indicate that the phytocompounds can potentially inhibit the essential proteins of the Infectious Bronchitis virus; however, in vitro and in vivo studies are required for validation. Nevertheless, this study is a significant step in exploring the use of botanicals in feed to control Infectious Bronchitis infections in poultry.


Subject(s)
Bronchitis , Infectious bronchitis virus , Animals , Infectious bronchitis virus/genetics , Chickens , Molecular Docking Simulation , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Poultry , Bronchitis/prevention & control , RNA
2.
Cell Commun Signal ; 20(1): 2, 2022 01 03.
Article in English | MEDLINE | ID: covidwho-1590514

ABSTRACT

Scavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin-Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type. Video abstract.


Subject(s)
Immunity, Innate , Toll-Like Receptors , Endocytosis , Phagocytosis , Receptors, Scavenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL